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Motivation and background
� Use of ISCCP cluster weather states 

(Jakob and Tselioudis 2003)

� Tropical convection and MJO 
(Tromeur and Rossow, 2010; 
Chen and Del Genio, 2009)

� Datasets:

� ISCCP Extratropical Cloud 
Clusters (35N/S, 2.5°x2.5° 1985-
2007, 3-hr)

� SEAFLUX (1998-
2007,0.25°x0.25° 3-hr), 
LHF/SHF/Surface Variables

� Product Homogenization:

� Fluxes regridded and resampled 
to ISCCP 2.5x2.5

� ISCCP 3-hr used to assign a daily 
class based on the most frequent 
cluster
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Decomposition of 
surface fluxes by 
weather state

� Weather regimes result 
in distributions of 
fluxes with different 
mean and extreme 
characteristics

� These are associated 
with changes in the 
bulk variables, as 
should be expected

� Both wind speed and 
near-surface humidity 
gradients are 
particularly well 
stratified, though the 
latent heat flux means 
are less so
� Indicates potential 

compensations
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Cloud Radiative Effect

from Oreopoulos and Rossow (2011)
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Compositing methodology
� Conditionally sample data using weather state classification (WS1-WS8; 

most convective to least convective)

� Further sampled based on compositing index to evaluate  low-frequency 
coupled variability

� Use NOAA Climate Prediction Center (CPC) indices for ENSO and MJO

¡ Examining differences in means can be decomposed as changes in 
class mean (A), changes in RFO (B), and covariant changes (C)
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MJO Composites by strength

� Composite MJO based on index 
strength not time-lagging

� All three regions typically show 
increased evaporation during 
convective phase and 
decreased evaporation during 
suppressed phase 

� The Indo-Pacific region 
changes à more wind-driven 
Eastern Pacific changes à
more near-surface moisture 
gradient changes
� But: EIO more coherent near-

surface moisture changes than 
WP
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MJO Composites – Decomposition into Weather states

� Decompose LHF into weather state means and relative frequency of occurrence 
(RFO)

� Systematic variations of both weather state means and RFO with MJO index

� Both variations contribute to total impact of a given weather state on mean 
energy exchange associated with MJO evolution



MJO Composites – Decomposition of changes

� The difference between convective, neutral, and suppressed 
conditions can be quantitatively decomposed into Mean-,RFO-, and 
covariant- driven change

� Convective vs. Neutral changes are primarily set by the systematic 
variation of class properties rather than RFO changes

� Changes in Western Pacific: wind speed.  East Pacific: Qs-Qa. Eastern 
Indian: both

EIO WP EP
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MLD and surface flux effects 
on SST tendencies

1. The net shortwave and latent heat flux tendencies are the largest 
components of the surface heat flux budget.

2. The mixed layer depth is an important contributor to the observed 
surface heat flux tendency pattern.



� EIO and WP: deeper ML in 
convective; EP: slightly 
deeper ML in suppressed

� WP: LHF variability has 
roughly same effect on SST 
tendency throughout MJO. 
EP: LHF much higher effect 
on variability during 
convective phase

� EIO: Even shallower ML in 
suppressed phase, but still 
large LHF due to Qs-Qa
difference: LHF variability 
strongest effect during 
suppressed phase
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But what regimes?
• Weather states based on cloud 

properties can be more difficult 
to intercompare between 
satellite observations and 
models

• To compare MERRA/GEOS-5 we 
have chosen to use temperature 
and humidity profile information 
from the model
• Easier to 

intercompare/access state 
variables in “model world” 

• Combined T/Q information into 
a single thermodynamic variable 
(θe)

• K-Means cluster analysis to 
obtain 10-clusters
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LHF Regime Mean Differences

� Can sort out overall 
biases as function of 
stability regime

� Overall, GEOS-5 shows 
systematically higher 
evaporation rates, but 
this “bias” is higher for 
more unstable 
conditions (~15Wm-2) 
vs. more stable (~5Wm-

2)

� Closest agreement in 
neutral condition and 
very stable conditions



LHF Regime 
Frequency 
Differences
� In addition to difference between regime 

means, the frequency of regime can also 
impact difference in total mean fields

� For day 0 —when GEOS-5 is most data 
constrained —relative frequency of 
occurrence of regimes is remarkably similar 
to that in MERRA, albeit with some 
difference

� Moving away from initialization however, 
GEOS-5 is unable to maintain proper 
distribution of unstable regimes, 
particularly over West Pacific and Atlantic 
Warm Pool  



LHF Regime Frequency Differences –
Another View

� Looking globally, 
transition of stability 
regimes as function of 
lag for each regime

� Because regimes 
frequencies partition full 
distribution, 
compensation between 
regimes

� There is clear preference 
for GEOS-5 to eliminate 
most unstable profiles 
within first few days 
toward more neutral 
profile
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Retrieval Biases and 
Cloud Weather States

• The structure in the retrieval 
(Qa, top) biases appear  to be 
co-aligned with patterns of 
cloud weather states
• WS are defined using ISCCP 

cloud-top histograms

• The largest biases in several of 
the Qa retrievals are aligned 
best with  Global WS 7 
(Tselioudis et al. 2012)
• Mostly clear, w/ thin 

boundary layer cloudy



Cloud impacts on passive microwave 
empirical retrieval algorithms

Binned Qa and Wspd vs. observed F15 TBs
• Near-surface humidity, air 
temperature, and wind speed 
retrievals show strong regime-
dependent conditional biases

• Conditional-RMS also 
appears dependent on cloud 
weather state, but to lesser 
extent

• When the underlying 
component of the conditional 
biases are regionally 
dependent, it is likely the 
application of “grouped” 
retrievals will result in regional 
biases



New Opportunities –
Retrievals using new algorithm

Binned Qa and Wspd vs. Clear-Sky simulated F15 TBs

• Passive microwave provide 
direct information on the 
clouds in the atmospheric FOV

• We can decompose the observed , 
TBobs,  into clear-sky and cloudy-
residual components, 

TBobs = TBclr + TBcld
• Then retrieve using:

{Qa,Ta,Wspd,SST} = F-1(TBclr)

• Conditional-Bias and RMS of
near-surface parameters against 
the Clear-Sky TB appear smaller 
and more consistent across all of 
the weather regimes



Summary

� Cloud-based weather states can be used to provide 
improved understanding of surface energy flux 
variability, model performance, and satellite 
retrievals of near-surface properties

� MJO variability is particularly well decomposed 
using ISCCP weather regimes from convective to 
neutral and suppressed states

� Different regions in the tropics show MJO variability 
being driven by different processes, with differing 
effects on SST due to MLD variability

� To fully realize air-sea coupling effects, cloud 
regimes most likely need to be coupled with at least 
boundary layer winds



Many thanks 
to Bill

� Birthing the idea of 
SeaFlux

� Giving me a chance for 
leadership

� Protecting against 
Clivarians

� Warning/encouraging 
about creating a data set

� Making me think about 
seasonal/diurnal variability

� Urging me to 
challenge the 
status quo

� And much more


